søndag den 30. december 2007

TGVs and mosquitoes

The total energy in each beam of protons in the LHC is equivalent to a 400 tonne train (like the French TGV) travelling at 150 km/h. However, only an infinitesimal part of this energy is released in each particle collision - roughly equivalent to the energy of a dozen flying mosquitoes. In fact, whenever you try to swat a mosquito by clapping your hands together, you create a collision energy much higher than the protons inside the LHC. The LHC's speciality is its impressive ability to concentrate this collision energy into a minuscule area on a subatomic scale. But even this capability is just a pale shadow of what Nature achieves routinely in cosmic-ray collisions.

During part of its operation, the LHC will collide beams of lead nuclei, which have a greater collision energy, equivalent to just over a thousand mosquitoes. However, this will be much more spread out than the energy produced in the proton collisions, and also presents no risk.


Håndværker - colic-help - skateboard - egypt - cambodia

onsdag den 12. december 2007

Modest by Nature's standards

Accelerators recreate the natural phenomena of cosmic rays under controlled laboratory conditions. Cosmic rays are particles produced in outer space in events such as supernovae or the formation of black holes, during which they can be accelerated to energies far exceeding those of the LHC. Cosmic rays travel throughout the Universe, and have been bombarding the Earth's atmosphere continually since its formation 4.5 billion years ago. Despite the impressive power of the LHC in comparison with other accelerators, the energies produced in its collisions are greatly exceeded by those found in some cosmic rays. Since the much higher-energy collisions provided by Nature for billions of years have not harmed the Earth, there is no reason to think that any phenomenon produced by the LHC will do so.

Cosmic rays also collide with the Moon, Jupiter, the Sun and other astronomical bodies. The total number of these collisions is huge compared to what is expected at the LHC. The fact that planets and stars remain intact strengthens our confidence that LHC collisions are safe. The LHC's energy, although powerful for an accelerator, is modest by Nature's standards.


Håndværker - colic-help - skateboard - tsunami - china