Massive black holes are created in the Universe by the collapse of massive stars, which contain enormous amounts of gravitational energy that pulls in surrounding matter. The gravitational pull of a black hole is related to the amount of matter or energy it contains – the less there is, the weaker the pull. Some physicists suggest that microscopic black holes could be produced in the collisions at the LHC. However, these would only be created with the energies of the colliding particles (equivalent to the energies of mosquitoes), so no microscopic black holes produced inside the LHC could generate a strong enough gravitational force to pull in surrounding matter.
If the LHC can produce microscopic black holes, cosmic rays of much higher energies would already have produced many more. Since the Earth is still here, there is no reason to believe that collisions inside the LHC are harmful.
Black holes lose matter through the emission of energy via a process discovered by Stephen Hawking. Any black hole that cannot attract matter, such as those that might be produced at the LHC, will shrink, evaporate and disappear. The smaller the black hole, the faster it vanishes. If microscopic black holes were to be found at the LHC, they would exist only for a fleeting moment. They would be so short-lived that the only way they could be detected would be by detecting the products of their decay.
Håndværker - colic-help - skateboard - taliban - terror